Q-ary Repeat-Accumulate Codes for Weak Signals Communications

Nico Palermo, IV3NWV
XVII EME Conference
Venice, Italy - 2016

What I'll speak about

- Part I - Introduction to QRA codes and decoders
- Part II - A QRA code for EME. Simulation results
- Part III - Exploiting the redundancy of a QSO
- Part IV - The new QRA64 mode for WSJT-X

I. Introduction to QRA codes and decoders

Historical Perspective

- ~1960 - Low Density Parity Check (LDPC) codes introduced by Robert Gallager at M.I.T.
- 1963...'80s - Nothing happens. Decoding too complicate for those years technology.
- 1993 - Alain Glavieux/Claude Berrou introduce Turbo codes and iterative decoding.
- 1995 - David MacKay resurrects Gallager's LDPC codes and shows how to decode them with Message Passing.
- 2000 - Aamod Khandekar/Robert McEliece at Caltech introduce Irregular Repeat-Accumulate (IRA) codes.
- ... 2016 - LDPC codes used everywhere from deep-space probes to mobile phones... and in WSJT-X as well!

LDPC Codes

- Low Density Parity Check means that the parity check matrix of the code is (very) sparse:
- Each parity check equation involves few codeword symbols
- Each codeword symbol is involved in few parity check equations
- Parity check matrix H:
- Rows indicate parity check equations
- Columns indicate codeword symbols
- Codewords \underline{x} satisfy the set of equations $H^{*} \underline{x}=\underline{0}$

Example: Hamming $(7,4)$ code. Not a LDPC code: H is not sparse

$$
H=\left(\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \xrightarrow{x 1+x 3+x 5+x 7=0} \begin{aligned}
& x 2+x 3+x 6+x 7=0 \\
& x 4+x 5+x 6+x 7=0
\end{aligned}
$$

QRA Codes

- Class of LDPC codes with Q-ary symbols set
- $\mathrm{Q}=4,8,16,32,64, \ldots$ or any number for which a finite field exists
- Maps naturally to orthogonal modulations (i.e. 64-FSK)
- Repeat-Accumulate (RA) encoding:
- Information symbols are repeated (like in a repetition code),
- Parity checks are generated as a weighted accumulation of the repeated information symbols sequence
- Same decoding procedure of LDPC codes
- Maximum A-Posteriori Probability with the Message Passing (MP) algorithm

MAP Decoding

- Maximum A Posteriori (MAP) Probability
- Bayes' rule:

$\operatorname{Prob}(\underline{X} \mid \underline{R})$ proportional to $\operatorname{Prob}(\underline{R} \mid \underline{X}){ }^{*} \operatorname{Prob}(\underline{X})$, where:

$\underline{X}=$ transmitted codeword,
$\underline{R}=$ received signal sequence
$\operatorname{Prob}(\underline{X} \mid \underline{R})=$ a posteriori probability $<-$ What we need to compute
$\operatorname{Prob}(\underline{R} \mid \underline{X})=$ likelihood <-- Channel dependence
$\operatorname{Prob}(\underline{X})=$ a priori probability <-- Code and a priori knowledge dependence

- For each codeword symbol we need to maximize the symbolwise probability $\operatorname{Prob}\left(X_{j} \mid \underline{R}\right)$ averaging $\operatorname{Prob}(\underline{X} \mid \underline{R})$ over all the possible cases we are interested into:
- $\operatorname{Prob}\left(X_{j} \mid \underline{R}\right)=$ sum of $\operatorname{Prob}(\underline{X} \mid \underline{R})$ over all codewords with given X_{j}

General Case MAP Decoding

- Given the likelihoods and any a priori knowledge:

1. Compute ALL the codewords a posteriori probabilities
2. For each information symbol:
a) Sum the probabilities of ALL the codewords in which a symbol assumes a given value, and
b) Select as the best estimate of a symbol the value which maximizes its a posteriori probability distribution

- Complexity scales exponentially with codeword length
- Example: $\mathrm{K}=72$ information bits => ~2^72 operations =>

Hundreds thousands years to decode a single message
(using a good PC)

Tanner Graphs

- Alternative representation of a code parity check matrix
- Mark codeword symbols with circles
- Mark parity check equations with boxes
- Connect circles to boxes with edges to indicate which symbol is involved in a given check equation
- Immediate sight of code properties (i.e. cycles)

Example: Hamming $(7,4)$ code $x 1+x 3+x 5+x 7=0 \quad$ (Check 1)
$x 2+x 3+x 6+x 7=0 \quad$ (Check 2)
$x 4+x 5+x 6+x 7=0 \quad$ (Check 3)

MAP Decoding of LDPC codes

- A posteriori probabilities can be computed exactly if the code Tanner graph is a tree (has no cycles)
- Parity check equations with few variables and variables involved in few checks => very fast evaluation of probabilities factors
- LDPC codes can be designed to have few and sufficiently large length (girth) cycles (no good code graph is a tree),
- LDPC codes involve few variables per parity check equation and few equations per variable =>
A posteriori probabilities can be evaluated with good
precision and much more quickly than in the general case
Decoding complexity scales linearly with codeword length

Tanner Graph of a QRA Code

- x's denote information symbols
- y's denote parity check symbols

Parity check

Permutation
atrix designed to exclude short length cycles

IV3NWV - Q-ary Repeat-Accumulate Codes for Weak Signals Communications

Message Passing Decoder

- MAP probabilities evaluated iteratively exchanging "messages" among circles (codeword variables) and boxes (check equations)
- The messages are actually probability distributions
- Each iteration is a two step process:
- $\mathrm{c} \rightarrow \mathrm{v}$ step : send messages from checks to variables
- $\mathrm{v} \rightarrow \mathrm{c}$ step : send messages from variables to checks
- After each iteration find the symbol values which maximize the (approximate) a posteriori probability and check if all parity check equations are satisfied (successful decode)
- Stop if no success within a max. number of iterations

II. Simulation Results

$\operatorname{QRA}(12,63) \leftrightarrow \operatorname{RS}(12,63)$

- AWGN channel, QRA MP decoder with 100 iterations
- Same code parameters/modulation/sync. pattern of JT65:
- K=12, N=63, 64-FSK (non coherent demod.), 63 sync. symbols

IV3NWV - Q-ary Repeat-Accumulate Codes for Weak Signals Communications

$\operatorname{QRA}(12,63) \leftrightarrow \operatorname{RS}(12,63)$

- Rayleigh channel, QRA MP decoder with 100 iterations
- Same code parameters/modulation/sync. pattern of JT65

III. Exploiting the redundancy of a QSO

Decoding with "a priori" knowledge

1) No a priori avail. => Maximum Likelihood (ML) decoder
2) A priori available => Maximum A Posteriori (MAP) prob. decoder

MAP decoders easily handle both cases

ML is just a special case of MAP
MAP is much better than ML

- A two-way QSO is a sequence of messages with decreasing amount of uncertainty/increasing amount of a priori (AP) knowledge:
- First message in a QSO is a CQ call, i.e. [CQ IV3NWV JN66]
- First replies (if any) directed to our call, i.e. [IV3NWV SM5BSZ JO89]
- Further replies come from known source, i.e. [IV3NWV SM5BSZ -25]
- Last reply is just an acknowledge, i.e. [IV3NWV SM5BSZ 73] => INSTRUCT THE DECODER TO HANDLE ALL THESE CASES!

Typical QSO "a priori"

Sample QSO between IV3NWV and SM5BSZ:

What SM5BSZ's

 decoder knows from QSO semantics
1. CQ IV3NWV JN66

2. IV3NWV SM5BSZ JO89
. 3. SM5BSZ IV3NWV -25
3. IV3NWV SM5BSZ R-25 . decoder knows from QSO semantics
-5. SM5BSZ IV3NWV 73
4. IV3NWV SM5BSZ 73

- Underlined fields fed to the MAP decoder as "a priori" info as the QSO proceeds to the end
- 1 field $\rightarrow \sim 28$ bit AP - 2 fields $\rightarrow \sim 56$ bit AP - 3 fields $\rightarrow 72$ bit AP

QRA Decoder with AP ↔ JT65

- QRA $(12,63)$ code with same parameters/modulation/sync. pattern of JT65
- Rayleigh channel - sync. losses not included
- Decode always with info received from the channel (unlike the JT65 deep-search)

QRA Decoder UER Performance

- Undetected Error Rate (UER) improved through design of a QRA $(13,64)$ code.
- $13^{\text {th }}$ symbol is a CRC- 6 check computed from the 12 information symbols
- The CRC-6 symbol is not sent through the channel (punctured code)
- The resulting code is still a $\operatorname{QRA}(12,63)$ with much better UER (< $\left.10^{\wedge}-4\right)$

IV. The QRA64 mode

QRA64

- New mode(s) for WSJT-X
- Based on a irregular QRA $(12,63)$ code with the same rate/symbol set of the RS code used in JT65:
- 12 information symbols (each 6 bit long)
- 51 parity check symbols (codeword length = 63 symbols)
- Actually a punctured QRA $(13,64)$ code over GF(64) with CRC-6
- 21 symbols synchronization pattern made by three 7×7 Costas arrays (Tnx Joe Taylor - K1JT) - 1.9 dB sync. energy gain over JT65
- Submodes A, B, C, D, E to handle Doppler spreads up to microwaves
- QRA encoder/decoder (me - IV3NWV)
- Sync algorithms/WSJT-X integration/twistles and bells (Joe - K1JT)
- > 3 dB coding gain over JT65 (with no AP knowledge)
- <-28 dB SNR threshold at 50\% copy exploiting AP on CQ calls

QRA64-10 GHz EME On-Air Tests

- Made by Charlie Suckling G3WDG and Rex Moncur VK7MO during July/August 2016
- Tests made with the 1.7.0 WSJT-X development version
- Lot of wav files recorded from real EME QSOs
- Tested Doppler spreads from $\sim 0 \mathrm{~Hz}$ and up to 100 Hz
- QRA64A, B, C, D, E modes and JT4F mode recordings to evaluate differences, benefits or disadvantages
- Performance compared using SNR degradation feature of WSJT-X:

1) Degrade wav files SNR until messages are no more decoded
2) The higher the SNR degradation, the better the performance

- Very useful to understand how to handle fast-fading conditions:

QRA64 gains $\sim 6 \mathrm{~dB}$ over JT4 when proper fast-fading likelihoods metric is used

IV3NWV - Q-ary Repeat-Accumulate Codes for Weak Signals Communications

QRA64D EME Tests (G3WDG \leftrightarrow VK7MO)

10 GHz - 100 Hz Doppler Spread - No Fast-Fading Metric

Performance
similar to JT4F

QRA64D with Fast-Fading Metric

Same file as before - $10 \mathrm{GHz} / 100 \mathrm{~Hz}$ Doppler Spread - Fast-Fading Likelihoods Processing

IV3NWV - Q-ary Repeat-Accumulate Codes for Weak Signals Communications

QRA64 with Fast-Fading Metric

$10 \mathrm{GHz} / 100 \mathrm{~Hz}$ Doppler Spread - SNR of original file degraded by 9 dB

Signal is hardly visible on a waterfall

Sync correlation peak still evident

Data Symbols Outputenergies

Estimated SNR $\sim-28 \mathrm{~dB}$. Successful decoding.
~6 dB gain over JT4F

Fast-Fading Metric recovers almost all the losses a single matched filter decoder exhibits

QRA Codes Software Availability

- General purpose QRA encoding/decoding software with AP features stable and available as Open Source (GPL License) for Windows and Linux platforms here:
- http://github.com/microtelecom/qracodes (not yet fully documented but evaluation tools included)
- Integration into WSJT-X to be completed with fast-fading metric/freq. drift compensation
- Use JTSDK and WSJT-X software repository for WSJT-X specific developments.

Acknowledgments

Thanks to:

- Leif Asbrink - SM5BSZ for fruitful discussions and suggestions about EME QSOs issues
- Joe Taylor - K1JT for all the work he has done to integrate the QRA codes into WSJT-X and for his new sync algorithm innovations in QRA64
- Andrea Montefusco - IWOHDV for his help porting the QRA codes software to Linux platforms
- Charlie Suckling - G3WDG \& Rex Moncur - VK7MO for their useful support with 10 GHz EME tests

...and thank you all for your attention

73
Nico Palermo, IV3NWV

